

Programmable LED Marquee

COMP SCI 353 Computer Architecture and Organization Project
 Fall 2006

Daniel Kelly

Table of Contents

1 Motivation

2 Research Conducted

3 Technology

3.1 PICkit 2 Starter Kit and Low Pin Count Demo Board

3.2 The Mighty 16F690 Microprocessor

3.3 7-Segment Displays vs. Dot Matrix Displays

3.4 BCD Decoder

3.5 Shift Register

4 Design Phases Overview

5 Phase 1: 7-Segment Countdown Program

6 Phase 2: 7-Sement Message Program

7 Phase 3: Dot Matrix Display Programs

8 Conclusion

9 References

10 Appendices

10.1 Appendix A Code

10.2 Appendix B Schematics

10.3 Appendix C Project Proposal

10.4 Appendix D Project Update

10.5 Appendix E CD-ROM of Photos & Videos

10.6 Appendix F Datasheets for devices

1. Motivation

My motivation for this project came from a couple of different places. I have

always wanted to build one of those LED displays that can be seen in front of banks

and stores. In one of my classes this semester, the professor asked everyone to make

a name-card so he could learn their names more quickly. I made one that lit up by

hot-gluing some LED’s to the back and hooking them up to a small battery pack. I

wished I could make an actual sign then, but I didn’t think it was feasible. Then

when the opportunity came up to do an implementation project using a

microprocessor, I thought, Hmm… maybe I could build one of those signs as part of

this project. It seemed like a logical choice. After all, we were going to study logic

and the TK-Gate seemed like a good way to simulate such a design. I didn’t really

think at first that I would be able to pull it off, but at the very least I could figure out

what it would take and maybe make one sometime in the future after school was done

and I had more time & money on my hands. One other thing that motivated me

toward this project was that I had recently come into a couple 5x7 dot matrix

segments, (which proved to be the wrong kind, but that’s another story.)

2. Research Conducted

The first thing I did after getting my proposal accepted, was to figure out what I

had on hand for parts. I dug out all my old electronics hobby stuff from high school,

and made an inventory of it. I also built a circuit implementing the traffic light

scenario just to ‘get my hands dirty’ again. Then I did a lot of research on the

Internet looking for different ways to build LED matrix signs. I found a lot of

interesting ideas, but not any real easy implementations that I could adopt. My

reasoning is that since these signs are commercially quite expensive, their builders

must keep their construction a closely guarded secret. I had a 6502 microprocessor,

and some RAM chips from out of an old PC, and I thought about trying to use them

in my design. I found some interesting articles and web sites about that old chip, but

they seemed to imply that I would need to buy and program an EEPROM, which I

didn’t really know how to do. In the course of my research I also found that a couple

of recurring themes.

Dot Matrixes are controlled not by turning on a bunch of LED’s at once in a

pattern, as one might think intuitively, but rather buy turning on a single LED or a

column of LED’s in a pattern, and then turning on the next column, and the next, with

only one column at a time being lit up. Then after lighting all the different columns

(either from left to right, or right to left), repeat the process, but very fast so there is

no flickering. The entire process is similar to the way a television CRT screen works.

Another common idea was the use of a microprocessor to store the patterns, and

then using shift registers to carry the pattern down to each LED matrix segment. Of

course no one specifically spelled out how either thing was to be done, but at least it

gave me an idea for a starting point.

Finally, I should mention the Maxim 6592 chip. They cost anywhere from $8 to

$15, but I was able to acquire one for free by requesting a sample from the Maxim

website. It seemed like the perfect solution at first because it had an entire ASCII

font set stored in ROM, and could be accessed by a microprocessor serially, and

could control up to 4 LED matrix displays simultaneously. Unfortunately, the first

thing I did with it was hook it up backwards, which I think might have damaged it. I

spent 3 days trying to get my microprocessor to talk to it, but finally had to give up

and pursue my own method of creating patterns and driving the displays. It was a

good learning experience because even though it didn’t work. I learned about SPI

(serial peripheral interface) communication, which is a method for embedded devices

to communicate using a 4-wire synchronous protocol that is widely used in the

electronics field. I will definitely be trying to make it work again after this project is

over. Maybe I can get another free sample.

Eventually my research led me to Microchip, who makes the PIC family of micro

controllers. They have a relatively inexpensive ($60) development kit called the

PICkit 2 Starter Kit, which I decided to buy after thoroughly investigating it on their

website. I also bought some extra microprocessors in case I damaged one, and I was

glad I did because it let me create new programs without having to overwrite the old

ones. The starter kit came with a demo board and 12 lessons that turned out to be just

enough to do teach me what I needed to do this project. I wish the lessons had gone

up to SPI, but I guess that was considered too advanced a topic for a starter kit.

The most useful research materials for this project turned out to be the datasheets

for the individual devices. The Microchip website had a technical forum, but their

site was so complex, that I wound up going to back to the datasheet over and over

instead.

I don’t believe I will be quoting any particular web site, since my project was

mostly built by trial and error and by using the datasheets, but I will include all the

links that I put in my browser bookmark within my references section. They deserve

some credit for pointing me in the right direction, and they may prove valuable to

anyone wanting to pursue a project of this type on their own. I will organize them by

the categories of Interesting, Useful, and Dead-Ends. I am also going to include the

datasheets themselves in my appendix, so the reader doesn’t have to go searching for

them.

3. Technology

I will briefly describe the technology used in this implementation instead of

examining it in detail for two reasons: First, the focus of this paper is how the

technology is used to implement the LED sign, not the specific technology itself.

Second, because the datasheets are so detailed, it is almost impossible to describe the

devices in detail without just reproducing that information. If the reader desires to

delve deeply into how the individual devices work, links to the datasheets and

manuals are included in the appendix.

3.1 PICkit 2 Starter Kit and Low Pin Count Demo Board

The most important piece of technology was the PICkit 2 starter kit. The best

description of it can be found on their website, as shown below:

 PICkit™ 2 Starter Kit DV164120 (purchase from Microchip
Direct)

The PICkit™ 2 Starter Kit is a low-cost development kit for
programming many of Microchip’s baseline, midrange, PIC18F,
PIC24, and dsPIC33 families of Flash memory microcontrollers. This
starter kit is designed to help the developer get up to speed quickly
using PIC® microcontrollers. The kit provides everything needed to
program, evaluate and develop applications using Microchip’s
powerful midrange Flash memory family of microcontrollers.
Instructions are provided in a series of twelve lessons that cover I/O,
interrupts, A/D converters, data tables and timers. All source code
files for the lessons are furnished.
The Low Pin Count Demo board supports all PIC12F and PIC16F
8/14/20 -pin products.

Features of PICkit 2 Starter Kit

• Low pin count demo board supporting 8/14/20-pin mid-range PICmicro microcontrollers
• Easy to use Windows® programming interface for programming many of Microchip’s Flash family of

microcontrollers
• Twelve sequential lessons written in assembly code demonstrate how to use Microchip’s midrange Flash

family of microcontrollers
• Microchip’s Tips ‘n Tricks Booklets provides efficient, low-cost design techniques using Microchip Flash

microcontrollers
• PICkit 2 User’s Guide (included on CD ROM)
• Low Pin Count Demo Board User’s Guide
• FREE! Microchip’s MPLAB IDE software for a complete code development environment
• FREE! HI-TECH PICC™ LITE C Compiler (contained on the MPLAB CD)
• FREE! CCS PCB™ Baseline C Compiler (contained on the MPLAB CD)

I found the PICkit extremely easy to use, and went through all 12 of the lessons in

one day. Making my own programs with the included MPLAB software proved a little a

little more tricky because I kept overwriting my original projects, but eventually I figured

it out. I highly recommend it as a way to learn how to develop embedded applications.

Once I got my first program working, I re-built it on a solder less breadboard to test,

and got that familiar feeling that programmers get when their first program works in a

new language. Similar to how a proud father feels when his kid says his/her first word.

The first program I worked with was called rotate. It placed a binary value into a file

register, and then shifted it one bit left, with a carry bit coming back around. It used the 4

LED’s on the demo board. I modified it to use 8 LED’s (one for each bit), and sent it a

value so 4 of them were lit at a time. I then used it to experiment with lighting segments

of a 7-Segment display. I needed pull-up resistors as shown in the photo to keep the

active low outputs from floating as shown below:

Unfortunately, I overwrote the program before I fully understood how to save

projects in MPLAB. I also had to pull apart the circuit to make room for the next

development phase. Luckily, because I ordered 5 extra microprocessor chips, I kept

the programmed IC, and the photos, so I can hook up the circuit again.

3.2 The Mighty 16F690 Microprocessor

The 16F690 is a 20-pin, Flash-Based CMOS Microcontroller. It uses the RISC

architecture like we learned about in class, with 35 instructions. The instruction set

and block diagram are shown below:

Instruction Set:

Block Diagram:

The 16F690 uses separate program and data memory areas. The data is held in

file registers using 7 bits, and multiple file registers are arranged into pages, which are

accessed by two extra bits in the status register. I had one interesting code problem early

on because I was accessing the wrong page, even though I had the correct address. Once

I noticed that, the code started working properly. There are 32 addresses called Special

Function Registers (SFR) that allow the device to interact with peripherals. The controls

and data registers are mapped directly. For instance, TRISC 0 will set the control bits for

port C to be outputs, and then PORTC 11111111 will set the data bits to 1 for each bit in

the SFR. The addresses above 0x20 to the end of each page are General Purpose

Registers (GPR) where program variables can be stored. Program memory is accessed

with a 13-bit Program Counter (PC). It works similarly to the PC in the MIPS data path

discussed in class.

Instructions are Byte oriented, Bit oriented, or Literal. For Byte instructions,

there is a 7-bit address, a destination bit, and a 6-bit op-code. One operand is made of the

data address plus the 2-bit page address, and the other is the working register (W or

Wreg). The destination bit determines where the result will be stored (in W, or in back in

the original file register). For Bit instructions, there are 7 bits of data, a 3-bit number,

and 4 bits of op-code. They can test, set, or clear a specific bit in a file register. For

Literal instructions, the data operand is contained in the instruction, and the other operand

is Wreg.

Other than the fact that it is an 8-bit microcontroller, instead of 32-bit like we

used in class, programming the code in the assembler was just like using PCSPIM for the

MIPS instruction set. It just has smaller instructions to figure out. In fact, the differences

between what I did to program this chip, and what we did in class programming with the

MIPS architecture are really only semantic differences similar to writing the same

programs in Java and ‘C’. I don’t want to get into detail any deeper here, as it is all

explained much better in the 292-page datasheet for the chip. I will, of course, explain

each of the instructions that I used in the final code example by using comments in the

code.

3.3 7-Segment Displays vs. Dot Matrix Displays

The seven segment displays are common anode, which meant that I had to send

the opposite pattern of bits to light them. For instance, if I wanted all segments to light,

then I had to send all zeros in the bits, instead of all 1’s.

Seven segment Display

 I controlled the seven segment displays two different ways. In the Countdown

program, I sent a 3-bit binary number to the 7447 BCD (Binary Coded Decimal) decoder

chip, which uses combinational logic to decode the binary number and light up the

appropriate segments on the display. In the 7-Segment Message program, I directly

controlled the segments of the display by setting the lower 7 bits on PORTC, and using

the MSB on PORTC as a clock signal. I sent the clock signal and each bit to its own 8-

bit Serial In, Parallel Out (SIPO) shift register, which meant that the character being sent

could shift from one display to the next.

The dot matrix displays are common cathode rows and common anode columns.

That means to turn on an LED, I have to send a low (0) to each of the desired the row

pins, and a high (1) to the desired column pin.

Dot Matrix Display

In my Dot Matrix program, I used the seven lower bits of PORTC of the

microprocessor to control rows 1 through 7 as active lows (0=on), which I wired in

parallel for all five displays. I used the two upper bits of PORTB as active highs (1=on).

I used one bit for the clock signal, and one to light up the first column. Then I clocked

that one column bit through the four shift registers, changing the row bits each time so

that only one column at a time lights up. The algorithm is shown below:

3.4 BCD Decoder

The 7447 operation is pretty much straight forward. It takes 4 binary inputs and

turns on outputs (active low) corresponding to the seven segments of the display. For

instance, if I send 0101 to inputs A, B, C, and D it will send lows to segments a, f, g, c,

and d, which will light up as 5 as shown below:

3.5 Shift Registers

 The shift registers are 74HC595 8-bit Serial-In, Parallel-Out (SIPO) that includes

a D-Type storage register.

I tied the clock signal for both the serial register and the storage register together

so that the storage register is always one pulse behind the shift register. It has an

output Q’h that allows for multiple shift registers to be linked together in series, so in

my circuit it is like having a 32-bit SIPO. On the 7-segment display circuit, each

register has a segment of the first display for input, and then each output is that same

segment, but on sequential displays. On the first clock pulse, the first display is lit

with data sent from the microprocessor, and shift registers ‘a’ through ‘g’ are loaded

with the first serial data. Initially all shift registers are empty, so displays show ‘8’

(all lows). Then on the next clock pulse, the first display is lit with new data, and the

shift register loaded with new data, and the old data is sent to the next storage bit in

each shift register, lighting display 2 with the data formerly in display 1. This

continues with each clock pulse.

 In the dot matrix example, the shift registers are to turn on the columns of the

common anode displays. A start bit is sent when the program cycle starts, and then it

is clocked sequentially to light up each column. After a word (5 characters) has been

displayed, a new start bit is sent to start displaying the word again. The entire cycle

happens many times very fast to display the word, many times per second. To

display multiple words, I set a loop and counter in place. For instance ‘Hello’ is

drawn 0xFF times, then ‘World’ is drawn 0xFF times. Then the whole program loops

indefinitely.

4. Design Phases Overview

 I decided to build the display in three phases in case something went wrong and I

couldn’t finish on time. I got this methodology from software development and

program management classes. It helps keep the project from sliding out of scope as

well. The first phase was to get it the microprocessor programmed and working on

the breadboard, and to make a single 7-Segment light up and display something.

Next I wanted to hook up several displays with the shift registers and make sure that

it was possible to cascade the characters in the shift registers. Finally, I would

attempt to combine those two ideas, and use the dot matrix displays so that I could

make the entire ASCII character set, or any characters that I wanted. Phase 4 would

have been to try and do it with the Maxim 6952 chip, but that proved to beyond the

timeline of the project.

5. Phase 1: 7-Segment Countdown Program

I used the rotate program to test polarity and values of resistors, as well as

functionality of the chip on the breadboard as opposed to the demo board. Then I

made a countdown program using the BCD decoder to make a simple program that

counts down from 9 to 0. Here are some photos of the proto board running at phase 1.

More photos and videos of the programs running can be found on the CD-ROM in

Appendix E.

 The commented code can be found in Appendix A. The algorithm for the program

is shown below:

1. Create a variable 'Display' and set its value to zero
2. Load decimal value 9 into working register (Wreg)
3. Move the Wreg value to 'Display'
4. Perform some delays using the internal timer
5. Move the 'Display' value to the working register (Wreg)
6. Move the Wreg value to PORTC (the I/O pins)
7. Decrement the 'Display' register, and test if Display = zero
 If Display=zero, then do not branch, else branch to 4.
8. Move value decimal 9 into Wreg
9. Move Wreg into 'Display'
10. Go To Step 4

6. Phase 2: 7-Segment Message Program

The 7-Segment Message Program bypasses the BCD chip and instead directly

turns the LED segments on and off. In addition to sending the 7 bits to the display, it also

sends them to seven shift registers. It also sends a clock bit to all the shift registers. Here

are some photos of the 7-Segment Message Program.

 Additional photos and videos of the programs running can be found on the CD-

ROM i

riables for 'Display' and 'Delay1' and 'Delay2'
2. Set PORTC to outputs

reg (display bits ie. '01110111')
play'

reg (sets clock bit high)

ch character
 forever

n Appendix E. The commented code can be found in Appendix A. The algorithm

for the program is shown below:

1. Create va

3. Set 'Display' to zero
4. Move literal data into W
5. Move Wreg into 'Dis
6. Move 'Display' into Wreg
7. Move Wreg into PORTC
8. Call Delay Routine
9. Move 'Display' into Wreg
10. Add '10000000' to W
11. Move Wreg to PORTC
12. Call Delay
13. Repeat steps 4-12 for ea
14. Go to Step 4

7. Phase 3: Dot Matrix Display Programs

 the 5x7 dot matrix display programs.

.

inv ne bank

er

rk,

o,

 I finally was ready to start programming

First I did some electrical testing to see

which polarity the displays were and to

match them up to the datasheet drawings

I tried to do a complex circuit

olving sending the columns to o

of shift registers, and the rows to anoth

bank of them. At first, it seemed to wo

get the same character on every display that way. For instance, the best I could

manage was to get it to say 'DDD' pause 'AAA' pause 'NNN'. That would never d

but then I realized that I was only able to

and I almost gave up, when I realized that what I really wanted to do was wire the

displays up as though there was only one very long display (instead of 5 columns by 7

rows, I should think of them as 25 columns by 7 rows). It actually wound up being a

much cleaner wiring and program than what I had originally thought.

Then I could use the sam

e code and schematic for on

e display

the code for each successive character, looping back to the be

t

word? The answer was to insert a counter so that the first

wor displ

ust

lo

, and copy-paste

ginning after five

characters to repeat the loop and make 5-letter words at a time.

 Using this I could write 'HELLO', or any other 5-letter or less word, bu

how to make a second

d ays a certain number of times (I chose hex number 0xFF), and then the

second word loops the same number of times, and then the third, etc. At the end j

loop the program back to the beginning and start over again. Finally I had my 'Hel

World' program. I am still working on making it scroll, but I had to stop at this point

because I am out of time. Here are some photos of the Hello World Program running:

Additional photos and videos of the programs running can be found on the CD-

ROM in Appendix E. The code for the Hello World program can be found in the

appendix and the algorithm for the program is below:

1. Turn off all bits on PORTB and PORTC
2. Turn on Data Bits (PORTC set bits 0 through 6,

3. Turn on Start Bit (PORTB set bit 6 = 1)

5. Turn off Clock Bit (PORTB set bit 7 = 0)
set bit 6 = 0)

7. Turn off Data Bits (PORTC set all bits 0 through 6

9. Bits (PORTC set bits 0 through 6,

 haracters)

0=on, 1=off)

4. Turn on Clock Bit (PORTB set bit 7 = 1)

6. Turn off Start Bit (PORTB

= off)
8. Turn on Clock Bit (shifts data to next column)

Turn on Data
0=on, 1=off)

10. Turn off Clock Bit
11. Repeat steps 7-10 for each character
12. Go to Step 2 to re-draw word (word = 5 c

8. Conclusion

I learned a lot from say this was the

most fun project I've worked on in 6 years at UWGB. I didn't think I was learning

much in this class that was relevant at first, but when I started trying to figure out the

ccurred to me that I would not have been able to decipher them without

the kno I

a

ht I

 doing this project. I also can honestly

data sheets it o

wledge that I've gained this semester. It became even more apparent when

tried to explain to some of my friends at work how I was able to program the

microprocessor. When I talked about setting data and control bits in the various

registers and they gave me a blank stare, I realized that something I had no

knowledge of 3 months ago had become as fluent as a second language to me within

small time. The most exciting thing of all is that an area of my life that I thoug

would never get back into again has become re-opened. I am already planning w

else I can do with these mighty little microprocessors.

The next phase that I plan to explore with the LED project is working with the

input side of the I/O. I want to add a keypad so that I can program in the characters

as a table, and then set which ones to display on the fly, without having to re-burn the

chip each time. I think I can use an old telephone keypa

hat

d as the input device.

Basical

n hook

 own

 a

he way I did. I

think I

ly it will turn it into a completely stand-alone display. After that, I have some

stepper motors that I removed from various printers over the years and I'm just

itching to build a robot or two. From there, the sky is the limit. One very practical

device that comes to mind is a digital speedometer for my jeep, and maybe I ca

up a thermal sensor and make a digital thermostat for my furnace.

Another thing I would like to do is design a trainer or demo board of my

for hobbyists and students interested in using a PIC microcontroller. There are only

couple good books out there, and the average person without a formal education in

this field would find it overwhelming to go through the datasheets t

could write a fairly good manual about how to design and build circuits like

the ones I am going to use these little chips for. In addition it would fill a growing

hobbyist niche market in the robotics field. I could put it on my website and try to

sell it as a startup kit for a reasonable price.

9. References

Interesting

http://www.makezine.com/blog/archive/2005/05/5x7_led_dot_mat.html

http u.edu/~cukic/CPE181/New_cpe481/group17/manuals/servicemanual.pdf://www.csee.wv

http yu.edu/~jhan/ledtouch/index.html://cs.n

http://ledlightray.com/tag/led-matrix/

http://www.hanssummers.com/electronics/clocks/matrix/

http://www.slscorp.com/pages/ledsls.php

http://www.ugcs.caltech.edu/~bret/create_index.html?create_electronics_ledmatrix

http://ask.metafilter.com/mefi/35456

Useful

https://itp.nyu.edu/~lg691/physComp/w8.html

http://www.birnboim.com/nyu/pcomp/techresearch/shiftregisters.html

http://www.acm.uiuc.edu/sigarch/tutorials/ledarray/

http://www.robotstore.com/store/product.asp?pid=1510&catid=1593

http://www.bgmicro.com/catalog.asp

http://www.armory.com/~spcecdt/electronics/LED_matrix/

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocNa

me=en023805

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=2122

Dead-Ends

http://www.cs.uml.edu/~fredm/courses/91.548-spr03/student/dmeppeli/lab5/

http://www.maxim-ic.com/appnotes.cfm/appnote_number/828

http://www.robotstore.com/store/product.asp?pid=1510&catid=1593

http://www.codemercs.com/IOWarriorE.html

http://www.aselabs.com/articles.php?id=196

http://www.lc-led.com/Catalog/department/35/category/69

http://www.futurlec.com/LEDMatrix.shtml

http://www.geocities.com/SiliconValley/2072/6502prj2.htm

http://www.geocities.com/SiliconValley/2072/eeprom.htm

http://www.phanderson.com/icd/tutorial.html

http://home.iae.nl/users/pouweha/lcd/lcd.shtml

http://www.makezine.com/blog/archive/2005/05/5x7_led_dot_mat.html
http://ledlightray.com/tag/led-matrix/
http://www.hanssummers.com/electronics/clocks/matrix/
http://ask.metafilter.com/mefi/35456
http://www.acm.uiuc.edu/sigarch/tutorials/ledarray/
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en023805
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en023805

10. Ap

CODE

Cddebwfunc.txt Code for Countdown Decimal Program

HelloJason.txt Code for 7-Segment Message Program

DMS.txt Code for Dot Matrix Display Program

pendix A

1

0.2 Appendix B

SCHEMATIC

10.3 Appendix C
Programmable LED Marquee

Topic:
My interest is in embedded microprocessors, and practical ways to use them.
Nothing is cooler than making things light up or beep, so I want to design a

most

The sign can be made to variable lengths by using multiple 5x7 LED
 module, Maximum =_??

programmable LED Marquee similar to the ones pictured above. I realize that
these types of signs are commercially available, and actually building one is
likely beyond the scope of this project due to time and budget constraints, but
designing one with the following specifications would use both the logic design
and assembly language programming learned in class.

The design specifications are:

matrix modules. (Minimum = 1 modules).

1. esearch: There are many different ways to make these things, and I will
eas to make my own design.

 of
ikely it

3.

ble
 or the Xilinx FPGA.

Final P
he final paper will analyze the research and design process used. It will

 techniques that could have been implemented,

The sign must be controlled by a microprocessor, which can store a
message in memory, and display it on the LED matrix.

This project will consist of several components:

R
do some Internet research and combine id

2. Design: Hardware design of the logic circuitry necessary to drive
multiple 5x7 LED matrix arrays interfaced to a microprocessor capable
storing data in memory and displaying it on an LED matrix. Most l
will be patterned after an 8-bit PIC microprocessor, or perhaps a Motorola
68HC microcontroller. (To be determined after research.)
Program: Write a program in ISA (for whichever microprocessor is
chosen) to store the message and to display it.

4. Implementation: If there isn’t time to actually build it, I hope to be a
to at least simulate the hardware using TKGate

aper / Implementation:
T
discuss various possible
and present the reasons why each was chosen or discarded. I hope to use
the design generated by this project to build a working sign sometime in
the future when time and budget permit, so real components must be used,
and a project plan with cost estimates will be part of the final paper.

10.4 Appendix D
Programmable LED Marquee Project Update

My microprocessor
ort chips that I had lying around, and simulating it with the FPGA board.

In the c

f it
 I

out $2

.
 LED dot matrix driver that can support up to 4 LED single color

matrixe
r and

l
bled a few circuits to re-familiarize myself

with th
ip

e programming for the PIC and writing up the
final pa

viations:
I don’t like to leave anything to chance, so I am approaching this project

.

 LED displays in time, and assemble the final project as
lose as possible to the original proposal.

ll go into effect if Plan A either
fails, or gets completed ahead of schedule.

Status:
 initial research started with trying to use an MOS6502

and supp
ourse of investigation, I learned that I would need to program an

EEPROM to hold the data, and I didn’t have a clue how to do that. During my
research of that, I came across the PicKit2 from Microchip. I had heard o
before, but I had never had the motivation to actually get deep into it until now.
justified the cost ($60) by saying that it was less than a textbook, and I can see
myself using it in the future. It comes with a demo board and software for
programming the chip with assembly language. After a little more research, I
decided to purchase the kit. I also purchased 5 extra chips (they are only ab
a piece) in case I burned it up and so that I could implement the MCU in future
projects.

In my research I also came across a pretty cool chip Maxim, the 6952EA
It is a 5x7

s, or 2 bi-color ones. It also has a built in ASCII 104 character font and
memory to store 24 custom fonts. It can be controlled with a microprocesso
a few input lines. At first I balked at the price (about $16), but then I saw a link
that said “Order Free Samples”. I filled out a request form and they sent me one.
Unfortunately, the 2 dot matrix displays I have on hand are Anode-Row, and the
Maxim chip drives Cathode-Row displays, so I have to order some displays. I
placed an order for some with BG-Micro (about $6) and they will hopefully be in
soon. I also ordered some shift registers from Jameco because I found a couple
sites that suggested how to use them to drive a row of displays. I also ordered an
LCD display with a supposed built-in driver that takes 8-bit ASCII input. I am
still waiting for some of the parts.

After the initial research, I spent about a week and half just organizing al
my old electronics parts, and assem

e process. Then I spent last weekend going through the initial 12 lessons
of the PIC processor and made a working program that I burned into a blank ch
and built that on a breadboard.

The next step is to wait for the additional parts to come. While I am
waiting I will be figuring out th

per.

Changes/De

with a plan A, B, and C

Plan A is to get the
c

Plan B is to use the LCD display. This wi

Plan C is to utilize the extra chips in several embedded applications such
s a microprocessor controlling a fan by sensing input from a temperature

Timelin

0/26 Project Proposal

earch

crochip

s, Make plan C circuits

lay Circuit

Preliminary Table of Contents:

Final Project Topic
ign

sign

Rejecte
Append

sheets

a
sensor, controlling a stepper motor with limit switches, and controlling or
interacting with other simple circuits. Again, Plan C will go into effect in
the either the event that A and B fail, or both succeed, and there is extra
time.

e:

1

10/30 Initial Internet Res

11/3 Ordered Maxim Chip

11/7 Ordered PicKit2 from Mi

11/17 Familiarize with Electronics

11/21 Project Update

11/25 Program Pic Chip

12/01 If Chips Arrive: Assemble / Program Disp

12/8 Write Paper.

Original Proposal

Circuit Des
Assembly De
Code
d Ideas
ices
A. Data

10.5 Appendix E

CD-ROM

Photos & Videos

10.6 Appendix F

Datasheets

 PICkit 2 Starter Kit Manual
. Low Pin Count Demo Board
.
 r

atrix LED Display
splay

. icrocontroller

I.
II
III 8-Bit Shift Register
IV. 7447 BCD to Decimal Decode
V. LTP-747 5x7 Dot M
VI. MAN-7 Seven Segment LED Di
VII PIC 16F690 20 pin 8-bit Flash-Based M

	Programmable LED Marquee
	Table of Contents
	
	Motivation
	7-Segment Displays vs. Dot Matrix Displays

	Design Phases Overview

	10.3 Appendix C

	Programmable LED Marquee
	Programmable LED Marquee Project Update

